vllm.v1.cudagraph_dispatcher ¶
CudagraphDispatcher ¶
Runtime cudagraph dispatcher to dispatch keys for multiple set of cudagraphs.
The dispatcher stores two sets of dispatch keys, one for PIECEWISE and one for FULL cudagraph runtime mode. The keys are initialized depending on attention support and what cudagraph mode is set in CompilationConfig. The keys stored in dispatcher are the only source of truth for valid cudagraphs that can be dispatched at runtime.
At runtime, the dispatch method generates the runtime cudagraph mode (FULL, PIECEWISE, or NONE for no cudagraph) and the valid key (batch descriptor) based on the input key. After dispatching (communicated via forward context), the cudagraph wrappers will trust the dispatch key to either capture or replay (if the mode matches), or pass through to the underlying runnable without cudagraph (if the mode does not match or mode is NONE).
Source code in vllm/v1/cudagraph_dispatcher.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 | |
cudagraph_keys instance-attribute ¶
cudagraph_keys: dict[
CUDAGraphMode, set[BatchDescriptor]
] = {PIECEWISE: set(), FULL: set()}
uniform_cudagraph_capture_sizes instance-attribute ¶
__init__ ¶
__init__(vllm_config: VllmConfig, is_drafter: bool = False)
Source code in vllm/v1/cudagraph_dispatcher.py
add_cudagraph_key ¶
add_cudagraph_key(
runtime_mode: CUDAGraphMode,
batch_descriptor: BatchDescriptor,
)
Source code in vllm/v1/cudagraph_dispatcher.py
caculate_uniform_decode ¶
caculate_uniform_decode(
num_scheduled_tokens: int,
num_reqs: int,
max_query_len: int,
) -> tuple[bool, int]
Source code in vllm/v1/cudagraph_dispatcher.py
cudagraph_padded_num_tokens ¶
cudagraph_padded_num_tokens(
num_tokens: int,
uniform_decode: bool,
uniform_query_len: int,
) -> tuple[int, bool]
Return Tuple[num_tokens_after_padded, is_cudagraph_padded].
Source code in vllm/v1/cudagraph_dispatcher.py
dispatch ¶
dispatch(
batch_descriptor: BatchDescriptor,
use_cascade_attn: bool = False,
) -> tuple[CUDAGraphMode, BatchDescriptor | None]
Given conditions(e.g.,batch descriptor and if using cascade attention), dispatch to a cudagraph runtime mode and the valid batch descriptor. A new batch descriptor is returned as we might dispatch a uniform batch to a graph that supports a more general batch (uniform to non-uniform).
Source code in vllm/v1/cudagraph_dispatcher.py
fast_plan ¶
fast_plan(
num_scheduled_tokens: int,
num_reqs: int,
max_query_len: int,
use_cascade_attn: bool = False,
) -> tuple[CUDAGraphMode, BatchDescriptor | None, int]
Plan cudagraph execution in a single call, without considering dp.
Returns (runtime_mode, batch_descriptor, num_input_tokens).
Source code in vllm/v1/cudagraph_dispatcher.py
get_capture_cases ¶
get_capture_cases(
uniform_decode: bool, uniform_query_len: int
) -> tuple[CUDAGraphMode, list[BatchDescriptor], list[int]]
Return capture sizes, keys, and runtime mode for a given case. The capture sizes and keys are sorted in descending order.
Source code in vllm/v1/cudagraph_dispatcher.py
get_local_batch_description ¶
get_local_batch_description(
num_scheduled_tokens: int,
num_reqs: int,
max_query_len: int,
) -> tuple[int, bool, int]
return Tuple[num_tokens_after_padding, uniform_decode, uniform_query_len]
Source code in vllm/v1/cudagraph_dispatcher.py
initialize_cudagraph_keys ¶
initialize_cudagraph_keys(
cudagraph_mode: CUDAGraphMode,
uniform_query_lens: int | list[int],
)
Source code in vllm/v1/cudagraph_dispatcher.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | |